Grothendieck Classes and Chern Classes of Hyperplane Arrangements
نویسنده
چکیده
We show that the characteristic polynomial of a hyperplane arrangement can be recovered from the class in the Grothendieck group of varieties of the complement of the arrangement. This gives a quick proof of a theorem of Orlik and Solomon relating the characteristic polynomial with the ranks of the cohomology of the complement of the arrangement. We also show that the characteristic polynomial can be computed from the total Chern class of the complement of the arrangement. In the case of free arrangements, we prove that this Chern class agrees with the Chern class of the dual of a bundle of differential forms with logarithmic poles along the hyperplanes in the arrangement; this follows from work of Mustaţǎ and Schenck. We conjecture that this relation holds for any locally quasi-homogeneous free divisor. We give an explicit relation between the characteristic polynomial of an arrangement and the Segre class of its singularity (‘Jacobian’) subscheme. This gives a variant of a recent result of Wakefield and Yoshinaga, and shows that the Segre class of the singularity subscheme of an arrangement together with the degree of the arrangement determine the ranks of the cohomology of its complement. We also discuss the positivity of the Chern classes of hyperplane arrangements: we give a combinatorial interpretation of this phenomenon, and we discuss the cases of generic and free arrangements.
منابع مشابه
Chern Classes of Free Hypersurface Arrangements
The Chern class of the sheaf of logarithmic derivations along a simple normal crossing divisor equals the Chern-Schwartz-MacPherson class of the complement of the divisor. We extend this equality to more general divisors, which are locally analytically isomorphic to free hyperplane arrangements.
متن کاملChern Classes of Graph Hypersurfaces and Deletion-contraction Relations
We study the behavior of the Chern classes of graph hypersurfaces under the operation of deletion-contraction of an edge of the corresponding graph. We obtain an explicit formula when the edge satisfies two technical conditions, and prove that both these conditions hold when the edge is multiple in the graph. This leads to recursions for the Chern classes of graph hypersurfaces for graphs obtai...
متن کاملComplexes, duality and Chern classes of logarithmic forms along hyperplane arrangements
We describe dualities and complexes of logarithmic forms and differentials for central affine and corresponding projective arrangements. We generalize the Borel–Serre formula from vector bundles to sheaves on P with locally free resolutions of length one. Combining these results we present a generalization of a formula due to Mustaţă and Schenck, relating the Poincaré polynomial of an arrangeme...
متن کاملRelative Bott-Chern Secondary Characteristic Classes
In this paper, we introduce six axioms for relative Bott-Chern secondary characteristic classes and prove the uniqueness and existence theorem for them. Such a work provides us a natural way to understand and hence to prove the arithmetic Grothendieck-Riemann-Roch theorem.
متن کاملChern Classes of Logarithmic Vector Fields for Locally Quasi-homogeneous Free Divisors
Let X be a nonsingular complex projective variety and D a locally quasihomogeneous free divisor in X. In this paper we study a numerical relation between the Chern class of the sheaf of logarithmic derivations on X with respect to D, and the Chern-Schwartz-MacPherson class of the complement of D in X. Our result confirms a conjectural formula for these classes, at least after push-forward to pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012